
Terascale Optimal PDE Simulations (TOPS):
Building an Holistic Approach to PDE-based Modeling

Large-scale simulations of importance to the Department of Energy often involve the
solution of partial differential equations (PDEs). In such simulations, continuous (infinite-
dimensional) mathematical models are approximated with finite-dimensional models. To
obtain the required accuracy and resolve the multiple scales of the underlying physics, the
finite-dimensional models must often be extremely large, thus requiring terascale comput-
ers. Fortunately, continuous problems provide a natural way to generate a hierarchy of
approximate models, through which the required solution may be obtained efficiently by
various forms of “bootstrapping.” The most dramatic examples are multigrid methods, but
other hierarchical representations are also exploitable.

Under the Scientific Discovery through Advanced Computing (SciDAC) initiative, a
nine-institution team is building an integrated software infrastructure center (ISIC) that fo-
cuses on developing, implementing, and supporting optimal or near optimal schemes for
PDE simulations and closely related tasks, including optimization of PDE-constrained sys-
tems, eigenanalysis, and adaptive time integration, as well as implicit linear and nonlinear
solvers. The Terascale Optimal PDE Simulations (TOPS) Center is researching and devel-
oping and will deploy a toolkit of open source solvers for the nonlinear partial differential
equations that arise in many application areas, including fusion, accelerator design, global
climate change, and the collapse of supernovae. These algorithms — primarily multilevel
methods — aim to reduce computational bottlenecks by one or more orders of magnitude
on terascale computers, enabling scientific simulation on a scale heretofore impossible.

Along with usability, robustness, and algorithmic efficiency, an important goal of this
ISIC is to attain the highest possible computational performance in its implementations
by accommodating to the memory bandwidth limitations of hierarchical memory architec-
tures.

Background and Significance
Multicomponent nonlinear partial differential equations (PDEs) provide the common

mathematical expression of many DOE simulations. PDE simulation codes require im-
plicit solvers for multiscale, multiphase, multiphysics phenomena from hydrodynamics,
electromagnetism, radiation transport, chemical kinetics, and quantum chemistry. Problem
sizes are typically now in the millions of unknowns; and with emerging large-scale com-
puting systems and inexpensive clusters, we expect this size to increase by a factor of a
thousand over the next five years. Moreover, these simulations are increasingly used for
design optimization, parameter identification, and process control applications that require
many repeated, related simulations.

Unfortunately, the implicit solution algorithms currently used in many contemporary
codes have far from optimal computational complexities and are invariably bottlenecks
that limit the scalability of the entire application, independent of the quality of the imple-
mentation. For example, an increase in problem size of a factor of 100 can easily result in
an increase in work requirements of 1000. In comparison, optimal complexity algorithms
have work (and memory) requirements that grow only linearly with problem size. Multi-
level (or multigrid) methods make up a class of optimal complexity algorithms that have
produced spectacular improvements in overall simulation time. However, current multi-
level software tends to be problem-specific and is mature only for scalar (as opposed to
multicomponent) PDEs. Because of the potential payoff, the TOPS ISIC will expend much
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of its effort on developing practical, usable multilevel methods for comprehensive aspects
of PDE simulations.

The TOPS ISIC is concerned with five PDE simulation capabilities: adaptive time inte-
grators for stiff systems, nonlinear implicit solvers, optimization, linear solvers, and eige-
nanalysis. The relationship between these areas is depicted in Figure 1. In addition, the
ISIC will contain two cross-cutting topics: software integration (or interoperability) and
high-performance coding techniques for PDE applications.
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Figure 1:An arrow fromA toB indicates thatA typically usesB. Optimization of systems governed
by PDEs requires repeated access to a PDE solver. The PDE system may be steady-state or time-
dependent. Time-dependent PDEs are typically solved with implicit temporal differencing. After
choice of the time-integration scheme, they, in turn, require the same types of nonlinear solvers that
are used to solve steady-state PDEs. Many algorithms for nonlinear problems of high dimension
generate a sequence of linear problems, so linear solver capability is at the core. Eigenanalysis
arises inside of or independently of optimization. Like direct PDE analysis, eigenanalysis generally
depends upon solving a sequence of linear problems. All of these five classes of problems, in a
PDE context, share grid-based data structures and considerable parallel software infrastructure.
Therefore, it is compelling to undertake them together.

Optimal (and nearly optimal) complexity numerical algorithms almost invariably de-
pend upon a hierarchy of approximations to “bootstrap” to the required highly accurate final
solution. Generally, an underlying continuum (infinite-dimensional) high fidelity mathe-
matical model of the physics is discretized to “high” order on a “fine” mesh to define the top
level of the hierarchy of approximations. The representations of the problem at lower lev-
els of the hierarchy may employ other models (possibly of lower physical fidelity), coarser
meshes, lower order discretization schemes, inexact linearizations, and even lower floating-
point precisions. The philosophy that underlies our algorithmics and software is to make
the majority of progress towards the highly resolved result through possibly low-resolution
stages that run well on high-end distributed hierarchical memory computers.

The ingredients for constructing hierarchy-of-approximations-based methods are re-
markably similar, be it for solving linear systems, nonlinear problems, eigenvalue prob-
lems, or optimization problems, namely:

1. A method for generating several discrete problems at different resolutions (for exam-
ple on several grids)

2. An inexpensive (requiring few floating point operations, loads, and stores per degree
of freedom) method for iteratively improving an approximate solution at a particular
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resolution

3. A means of interpolating (discrete) functions at a particular resolution to the next
finer resolution

4. A means of transferring (discrete) functions at a particular resolution to the next
coarser resolution (often obtained trivially from interpolation).

We believe that software should reflect the simplicity and uniformity of these ingredi-
ents over the five problem classes and over a wide range of applications. We expect that
with experience we will achieve a reduction in the number of lines of code that need to be
written and maintained, because the same code can be reused in many circumstances.

Algorithms and software for the solution of linear and nonlinear systems of equations,
especially those arising from PDEs, have been principal emphases of the Department of
Energy research portfolio for decades. This points both to the central importance of this
project, and also to the historical difficulty of reconciling the conflicting objectives of solver
software technology. Solvers are supposed to be ofgeneral purpose, since a great diversity
of applications require them, but they are also supposed to behighly performant, since
they are often the inner loops of such applications. However, high performance usually
requires exploitation of special structure (e.g., symmetry, dense blocking, geometrical or
coefficient regularity), which may be different in different applications. Then, too, solvers
for PDEs are supposed to berobustacross all regimes of use, since scientists trained in
the application domain cannot also be required to be expert in tuning solvers, but they are
also supposed to haveoptimal complexity, since desired discrete problem size is limited
only by the validity of the continuum model. Once again, algorithmic optimality (work and
memory requirements a small multiple of their information-theoretic minima) is generally
achieved by exploitation of special structure that cannot be assumed in a robust code.

These conflicting objectives do not describe a hopeless situation, however. The oppor-
tunity for 21st century solver developers is to exploit advances in object-oriented program-
ming to construct highly versatile and adaptive software that finds, creates, and exploits
structure wherever possible, while automatically “falling back” to conservative approaches
in the remaining (hopefully lower-dimensional) parts of a problem. The solver toolkit of the
future will be a collection of objects with rich and recursive interconnections, rather than
a collection of subroutines through which a relatively small number of calling sequences
are predefined. Algorithmic theory, scientific software engineering, and understanding of
architecturally-motivated performance optimizations have all advanced significantly since
the last time many applications communities “fastened onto” their canonical solver tech-
nology. Advances along these three fronts must be packaged, refined, freshly promoted,
and supported for the benefit of the user community.

The efforts defined for TOPS, the co-PIs joining to undertake them, and the alliances
proposed with other groups have been chosen to exploit the present opportunity to rev-
olutionize large-scale solver infrastructure, and lift the capabilities of dozens of DOE’s
computational science groups as an outcome. The co-PIs’ current software (e.g., hypre,
PETSc, ScaLAPACK, SuperLU), though not algorithmically optimal in many cases, and
not yet as interoperable as required, is in the hands of thousands of users, and has created
a valuable experience base. The co-PIs have extensive networks of previous collabora-
tions with each other and with key co-PIs in other SciDAC groups with which natural
development synergisms exist — including complex geometry and adaptive gridding, high
performance, and common component architecture. They also have tight collaborations
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planned with applications teams. The primary applications collaborators will be allowed to
influence TOPS priorities for software development. Since our solver software has many
user groups already, we expect considerable additional user interaction beyond the primary
SciDAC-supported collaborators.

Just as we expect our user community to drive our research and development work, we
expect to significantly impact the scientific priorities of users by emphasizing optimization
(inverse problems, optimal control, optimal design) and eigenanalysis as part of our solver
toolkit.

Optimization subject to PDE-constraints is a particularly active subfield of optimization
because the traditional means of handling constraints in black-box optimization codes —
with a call to a PDE solver in the inner loop — is too expensive. We are emphasizing
“simultaneous analysis and design” methods in which the cost of doing the optimization is
a small multiple of doing the simulation and the simulation data structures are actually part
of the optimization data structures.

Likewise, we expect that a convenient software path from PDE analysis to eigenanalysis
will impact the scientific approach of users with complex applications. For instance, a PDE
analysis can be pipelined into the scientific added-value tasks of stability analysis for small
perturbations about a solution and reduced dimension representations (model reduction),
with reuse of distributed data structures and solver components.

Our motivating belief is that most PDE simulation is ultimately a part of some larger
scientific process that can be hosted by the same data structures and carried out with many
of the same optimized kernels as the simulation, itself. We intend to make the connection to
such processes explicit and inviting to users, and this will be a prime metric of our success.
The assembly of the project team and the organization of the proposal flow directly from
this program of “holistic simulation”:Terascale software for PDEs should extend from the
analysis to the scientifically important auxiliary processes of sensitivity analysis, modal
analysis and the ultimate “prize” of optimization subject to conservation laws embodied
by the PDE system.

Project Personnel
The TOPS project involves over two dozen senior personnel at nine institutions, plus associated post-

doctoral and graduate student members. In the following list (accurate as of July 2001), the names of lead
PIs at each institution are italicized.

Argonne National Laboratory Steve Benson,Jorge Moŕe, Todd Munson,Barry Smith

Carnegie Mellon University Omar Ghattas

Lawrence Berkeley National Laboratory Parry Husbands, Sherry Li, Osni Marques,Esmond Ng, Chao
Yang

Lawrence Livermore National Laboratory Edmond Chow,Rob Falgout, Steve Lee, Radu Serban, Panayot
Vassilevski, Carol Woodward

New York University George Biros,Olof Widlund

Old Dominion University David Keyes, Alex Pothen

University of California Jim Demmel

University of Colorado Xiao-Chuan Cai, Tom Manteuffel,Steve McCormick

University of TennesseeJack Dongarra, Victor Eijkhout

David E. Keyes, Department of Mathematics & Statistics, Old Dominion University,dkeyes@odu.edu
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